3D reconstruction of atomic structures from high angle annular dark field (HAADF) STEM images and its application on zeolite silicalite-1.

نویسندگان

  • Tom Willhammar
  • Alvaro Mayoral
  • Xiaodong Zou
چکیده

High-resolution transmission electron microscopy (HRTEM) has shown to be very powerful for solving three-dimensional (3D) structures of unknown crystals. HRTEM has a unique advantage over diffraction for solving structures. Crystallographic structure factor phases, which are lost in diffraction can be directly obtained from HRTEM images. For the determination of a 3D crystalline structure by HRTEM, the crystallographic structure factor amplitudes and phases extracted from HRTEM images along different zone axes are combined to reconstruct a 3D electrostatic potential map. In recent years, scanning transmission electron microscopy (STEM) has reached the atomic resolution, which is comparable to that of HRTEM. Here we show, for the first time, that the structure factor phases can be also obtained from high angle annular dark-field (HAADF)-STEM images and used for 3D reconstruction of atomic structures. This is applied to the complex zeolite structure, silicalite-1 (Formula SiO2, framework code MFI, Pnma, a = 20.090 Å, b = 19.738 Å and c = 13.142 Å). We have compared the amplitudes and phases obtained from HAADF-STEM images with those from HRTEM images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Simulation and Experimental High-Angle Annular Dark Field Tomography

In the last 10 years, the transmission electron tomography technique was extensively used in biology applications to obtain 3D configurations of small organic structures [1]. Such bright field electron tomography is not generally used in material science applications as the diffraction effects result in strong artefacts during the reconstruction. Bragg’s diffractions are indeed present at certa...

متن کامل

Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling

Variable-angle high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy is developed for precise and accurate determination of three-dimensional (3D) dopant atom configurations. Gd-doped SrTiO3 films containing Sr columns containing zero, one, or two Gd dopant atoms are imaged in HAADF mode using two different collection angles. Variable-angle HAADF significant...

متن کامل

Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.

A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this the...

متن کامل

High spatial resolution tomographic reconstruction from STEM high angle annular dark field (HAADF) images

A technique for high spatial resolution three dimensional reconstruction from STEM HAADF images using electron tomography is presented. ‘Z-contrast’ images are shown to be ideal projections for tomography and examples are shown from nanostructured catalysts and magnetotactic bacteria crystallites. Results prove that accurate reconstruction is possible of both internal positions and exterior sha...

متن کامل

Progress in Applications of Quantitative STEM

High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) is highly sensitive to the type and number of atoms in the atomic columns of a sample. Image contrast in HAADF-STEM agrees quantitatively with image simulations [1]. An important complementary method in STEM is position averaged convergent beam electron diffraction (PACBED), which is highly sensitive to infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 37  شماره 

صفحات  -

تاریخ انتشار 2014